Strange as it may sound, the computer virus is something of an Information Age marvel. On one hand, viruses show us how vulnerable we are -- a properly engineered virus can have a devastating effect, disrupting productivity and doing billions of dollars in damages. On the other hand, they show us how sophisticated and interconnected human beings have become.
For example, experts estimate that theMydoom worm infected approximately a quarter-million computers in a single day in January 2004. Back in March 1999, theMelissa virus was so powerful that it forced Microsoft and a number of other very large companies to completely turn off their e-mail systems until the virus could be contained. The ILOVEYOU virus in 2000 had a similarly devastating effect. In January 2007, a worm called Storm appeared -- by October, experts believed up to 50 million computers were infected. That's pretty impressive when you consider that many viruses are incredibly simple.
When you listen to the news, you hear about many different forms of electronic infection. The most common are:
- Viruses: A virus is a small piece of software that piggybacks on real programs. For example, a virus might attach itself to a program such as a spreadsheet program. Each time the spreadsheet program runs, the virus runs, too, and it has the chance to reproduce (by attaching to other programs) or wreak havoc.
- E-mail viruses: An e-mail virus travels as an attachment to e-mail messages, and usually replicates itself by automatically mailing itself to dozens of people in the victim's e-mail address book. Some e-mail viruses don't even require a double-click -- they launch when you view the infected message in the preview pane of your e-mail software .
- Trojan horses: A Trojan horse is simply a computer program. The program claims to do one thing (it may claim to be a game) but instead does damage when you run it (it may erase your hard disk). Trojan horses have no way to replicate automatically.
- Worms: A worm is a small piece of software that uses computer networks and security holes to replicate itself. A copy of the worm scans the network for another machine that has a specific security hole. It copies itself to the new machine using the security hole, and then starts replicating from there, as well.
Virus authors adapted to the changing computing environment by creating the e-mail virus. For example, the Melissa virus in March 1999 was spectacular in its attack. Melissa spread in Microsoft Word documents sent via e-mail, and it worked like this:
Someone created the virus as a Word document and uploaded it to an Internet newsgroup. Anyone who downloaded the document and opened it would trigger the virus. The virus would then send the document (and therefore itself) in an e-mail message to the first 50 people in the person's address book. The e-mail message contained a friendly note that included the person's name, so the recipient would open the document, thinking it was harmless. The virus would then create 50 new messages from the recipient's machine. At that rate, the Melissa virus quickly became the fastest-spreading virus anyone had seen at the time. As mentioned earlier, it forced a number of large companies to shut down their e-mail systems to control the spread.
The ILOVEYOU virus, which appeared on May 4, 2000, was even simpler. It contained a piece of code as an attachment. People who double-clicked on the attachment launched the code. It then sent copies of itself to everyone in the victim's address book and started corrupting files on the victim's machine. This is as simple as a virus can get. It is really more of a Trojan horse distributed by e-mail than it is a virus.
The Melissa virus took advantage of the programming language built into Microsoft Word called VBA, or Visual Basic for Applications. It is a complete programming language and it can be used to write programs that do things like modify files and send e-mail messages. It also has a useful but dangerous auto-execute feature. A programmer can insert a program into a document that runs instantly whenever the document is opened. This is how the Melissa virus was programmed. Anyone who opened a document infected with Melissa would immediately activate the virus. It would send the 50 e-mails, and then infect a central file called NORMAL.DOT so that any file saved later would also contain the virus. It created a huge mess.
Microsoft applications have a feature called Macro Virus Protection built into them to prevent this sort of virus. With Macro Virus Protection turned on (the default option is ON), the auto-execute feature is disabled. So, when a document tries to auto-execute viral code, a dialog pops up warning the user. Unfortunately, many people don't know what macros or macro viruses are, and when they see the dialog they ignore it, so the virus runs anyway. Many other people turn off the protection mechanism. Because of this, the Melissa virus spread despite the safeguards in place to prevent it.
In the case of the ILOVEYOU virus, the whole thing was human-powered. If a person double-clicked on the program that came as an attachment, then the program ran and did its thing. What fueled this virus was the human willingness to double-click on the executable. The same kinds of exploits have also been passed over instant messaging networks like AIM and Windows Live Messenger. Commandeered accounts will send out links to viruses in instant messages; anyone who clicks the link and installs a Trojan application will have their own account hijacked and unwittingly spam their own friends with the compromising link.
No comments:
Post a Comment